

2

Abstract

Program comprehension is the process through which a programmer understands

the source code. There have been my theories and methodologies to better program

comprehension, including as Eye-Tracking, Electroencephalogram (EEG), and

Functional Magnetic Resonance Imaging(fMRI) [7][8][9]. After reviewing studies in

the subject of program understanding [1][2], Eye-Tracking seems to be one of the

most practical and successful methods. In earlier research, the impact of curly

brackets was never examined. However, the significance of curly brackets cannot be

ignored since they are an integral feature of many programming languages like C,

C++, Java, Rust, etc. We performed eye tracking research in this thesis to explore

the impact of several styles of curly brackets (WOC, WIC, and CNL) on program

understanding. This research examined the dependent variables response time,

correctness, and visual attention. The research was carried out in the laboratory of

Chemnitz University of Technology, where an Eye-Tracker and PsychoPy were set

up together. 20 participants took part in the study, and they were required to

comprehend different code snippets. Then, after each snippet, participants were

asked to choose an answer from two possibilities using a mouse click, and each

participant's response was registered. In addition, an Eye-Tracker monitors the

participants' eye movements throughout the study.

Response time, accuracy of responses, and visual attention have all been calculated

using survey data. In our investigation, we discovered that there is no difference in

response time, correctness, or visual attention when different styles of curly brackets

are used. Even though we discovered some intriguing outcomes for visual attention,

such as the fact that lengthier snippets in which curly brackets were started from a

new line (CNL) had the highest average fixation duration.

3

Acknowledgments

Without the insightful direction and helpful support of many people, I would not have

been able to successfully complete this work. These individuals have my greatest

thanks for their contributions. I would want to express my gratitude to my supervisor

Arooba Aqeel and my professor Prof. Dr. Janet Siegmund for providing me with

this opportunity and for their assistance and guidance during the process of doing

research for my thesis. In addition, I'd want to express my gratitude to Chemnitz

University of Technology for providing the resources available. In conclusion, I would

want to express my gratitude to everyone who participated in the research and offered

insightful responses.

4

Table of Contents
Abstract ... 2

Acknowledgments ... 3

List of Figures ... 6

List of Tables .. 8

1 Introduction .. 9
1.1 Problem statement and Motivation .. 9
1.2 Research Objective, Questions .. 11
1.3 Research Significance .. 11
1.4 Limitations .. 12
1.5 Research structure outline .. 12

2 Literature Review .. 13
2.1 Brief history of Curly brackets ... 13
2.2 Syntax and semantics in programming language ... 14

2.2.1 Syntax .. 14
2.2.2 Syntax Error ... 15
2.2.3 Semantics .. 16
2.2.4 Semantic Error .. 16

2.3 Curly brackets in Programming language ... 17
2.3.1 Scope ... 18
2.3.2 Blocks .. 18
2.3.3 Use of curly brackets in Programming language .. 18
2.3.4 Placement of curly brackets ... 21

2.4 Program Comprehension ... 22
2.4.1 Think – Aloud Protocol ... 22
2.4.2 Memorization ... 22
2.4.3 Comprehension Tasks ... 22

2.5 New techniques to measure program comprehension: ... 22
2.5.1 Eye tracking: .. 22

2.5.1.1 Different kind of Eye tracking devices current time: ... 23
2.5.1.2 Terminology ... 24
2.5.1.3 Representative algorithms for saccade and fixations .. 26
2.5.1.4 Different Eye Tracking Matrices ... 28
2.5.1.5 Eye tracking studies in Program comprehension ... 29

2.5.3 fMRI (Functional magnetic resonance images) .. 32

3 Methodology .. 32
3.1 Research planning ... 32

3.1.1 Research Material ... 32
3.1.1.1 Snippets Generation ... 33
3.1.1.2 Snippets Selection .. 33
3.1.1.3 Code snippet Example .. 34

3.1.2 Participants for research .. 36

5

3.1.3 Technologies and tools used .. 37
3.1.4 Research Design .. 38

3.1.4.1 Within Subject Design ... 39
3.3.5 Research setup .. 41
3.3.6 Data collection Method .. 47

4 Results and data analysis ... 48
4.1 Preparation of data set ... 48
4.2 Behavioral Data .. 48

4.2.1 Descriptive Statical analysis of behavioral data (Response time): .. 49
4.2.2 Descriptive Statical analysis of behavioral data (Correctness): ... 51
4.2.3 Hypothesis Testing: ... 52
4.2.4 Inferential Statical Analysis of Behavioral Data (Response Time): ... 52
4.2.5 Inferential Statical analysis of behavioral data (Correctness (%)): .. 54

4.3 Visual Attention: ... 56

 .. 57

 .. 59

 .. 59
4.3.1 Descriptive Statical analysis of visual attention (Fixation Duration): ... 62
4.3.2 Hypothesis testing visual attention: ... 63
4.3.3 Inferential Statical analysis of visual attention (Fixation duration): ... 64

5 Discussion ... 66
5.1 Threats to Validity ... 66

6 Conclusion and Future work .. 67

References ... 68

QUESTIONNAIRE .. 73

6

List of Figures

Figure 1. Java snippet to compute Array sum with different style of curly brackets .. 10
Figure 2. Abstract syntax example ... 15
Figure 3. Syntax Error example .. 15
Figure 4. Syntax Error message .. 15
Figure 5. Semantic Error example .. 17
Figure 6. Blocks example .. 18
Figure 7. Functions example ... 19
Figure 8. Example of loops ... 19
Figure 9. Example of for loop ... 19
Figure 10. Example of do while loop .. 20
Figure 11. If/else statements example ... 20
Figure 12. Switch statements example .. 20
Figure 13. Example of curly brackets .. 21
Figure 14. table mounted eye tracker[25] .. 23
Figure 15. Head mounted Eye tracker [26] ... 24
Figure 16. Demonstrates the Gaze points, Saccades ,fixations. AOI(Area of interest), transition between AOI,

and Scanpath.[28] .. 24
Figure 17. Scanpath on code snippet. Fixations are represented by circles the size of circle is proportional to the

duration of fixations. Saccades are line connecting the fixations and number is the circle order of the fixations.

 ... 25
Figure 18. Heatmap example ... 26
Figure 19. Histogram of publication of journal articles, conference paper and books in Eye-tracking 29
Figure 20. a) Participant wearing EEG (b) International 10-20 system of electrode .. 31
Figure 21. shows workflow of fMRI [42] .. 32
Figure 22. Snippet Example of ContainsSubstring (WOC) .. 35
Figure 23. Snippet Example of ConatinsSubstring (WIC) .. 35
Figure 24. Snippet example of ContainsSubstring (CNL) .. 36
Figure 25. Builder interface PsychoPy .. 37
Figure 26. more complex flow arrangements .. 38
Figure 27. Visualization of our experiment design ... 40
Figure 28. Builder with control flow of our experiment (Part1) ... 41
Figure 29. Builder with control flow of our experiment (Part2) ... 42
Figure 30. Shows eye tracking code setup with PsychoPy .. 43

7

Figure 31. Placing an eye tracker ... 44
Figure 32. Participant’s position for study ... 44
Figure 33. Adjusting head position with eye tracker .. 45
Figure 34. Calibration dots ... 45
Figure 35. Calibration for left eye ... 46
Figure 36. resultant image for calibration ... 46
Figure 37. Start of study ... 47
Figure 38. Demonstrates the mean response time for each participant in each format (Without curly brackets,

With curly brackets from same line, with curly brackets from new line) ... 50
Figure 39. Demonstrates the average correctness percentage (%) for each participates in each snippet in all

formats (Without curly brackets, With curly brackets from same line, with curly brackets from new line). . 51
Figure 40. Q-Q plot to check the normality of residual .. 52
Figure 41. Boxplot comparing the response time mean for each group .. 53
Figure 42. Q-Q plot to check the normality of residual for Correctness (%) ... 54
Figure 43. Boxplot comparing the response time mean for each group .. 55
Figure 44. Shows the both the images together (a) ArraySum (without AOI’s) and (b) ArraySum (with AOI’s) . 60
Figure 45. shows the heatmaps, fixation points and scnapath over AOIs of the Images 61
Figure 46. Shows the different response time for algorithms in different style of brackets 63
Figure 47. Q-Q plot to check the normality of residual for fixation .. 64
Figure 48. Boxplot comparing the response time mean for each group .. 65

8

List of Tables

Table 1. Syntax and symentic comparision. ... 17

Table 2. Bednarik and Tukiainen study on code comprehension [33] .. 29

Table 3. Busjahn study for code comprehension [33] ... 30

Table 4. Busjahn’s study for code comprehension [33] .. 30

Table 5. Rodeghero study for code comprehension [33] .. 31

Table 6. All snippets used in this study and their corresponding response .. 33

Table 7. Demographic data of the participants ... 36

Table 8. Shows the combinations used to conduct the study ... 40

Table 9. Shows all outliers corresponding participants and Snippets .. 48

Table 10. Complete list of research snippets, together with average response time (in seconds) and accuracy

(in percent) across all three categories: Missing curly brackets, with curl brackets same line, with curly

brackets new line. .. 49

Table 11. One-way ANOVA test results for response time ... 53

Table 12. One-way ANOVA test results for Correctness (%) ... 55

Table 13. Show the average heatmaps for all the combination ... 59

Table 14. Shows average fixation duration in AOI for each snippet ... 62

Table 15. ANOVA test results ... 65

9

1 Introduction

Program comprehension or code comprehension refers to the process by which

developers interpret source code; it is an essential human factor in software

engineering. Software developers’ fundamental task is to understand the program.

Understanding source code is a crucial cognitive activity in software development,

since developers spend most of their time doing so [1].

If we had a greater grasp of the cognitive process that is involved in programming,

we could determine better methods to teach programming and understand how

different teaching approaches would influence the programmers' ability to

comprehend the programs they are working with. It helps create and build efficient

programming languages and software tools that assist developers in their daily lives

and help them write better software [4].

As program comprehension has been studied for a long time and in starting phase

researcher used approaches like memorization, think aloud protocol. Later in time

techniques like neuro imaging and Eye–Tracking started gaining popularity in

program comprehension. In some studies fMRI and eye tracking are combined to get

more gist about the programming comprehension [2][3]. Other studies have

examined programme comprehension using near-infrared spectroscopy and

electroencephalography (EEG) which is more cognitive and gives information about

neuron level. In this study we are going to conduct an eye tracking study to

understand the program comprehension more precisely.

1.1 Problem statement and Motivation

After many years of research on program comprehension, a variety of ideas, models,

and tools have arisen that characterize how programmers think when they are

attempting to comprehend source code. These have been developed to aid in the

process of writing programs. In those methods Eye-Tracking has been a promising

method to understand the program comprehension. An Eye-Tracking study by Sharif

and Maletic (2010) which focuses on effect of identifiers naming conventions

(camelCase and under_score) on program comprehension in which they found that

significant improvement in time and lower visual effort with the underscore style [6].

Another Eye tracking study by Peitek et al. (2018) in which Eye tracking is added with

fMRI to obtain more comprehensive understanding of program comprehension [3].

The Eye-Tracking study for programming style iteration and recursion by Aqeel at al.

(2021) also been done which helps us to understand which programming style effect

more in program comprehension [8]. Moreover, eye tracking study by Peitak at al.

(2021) in which effect of linearity of source code and program comprehension

strategy (top-down and bottom up) on linearity of reading order is studied [9]. After

reviewing all the previous Eye tracking studies, we can say that there is no study has

done about the effect of curly brackets in program comprehension. As curly brackets

have been a crucial part of most of the programming language, so it is necessary to

conduct a study regarding curly brackets.

10

There is different type of variation where we can use different style of curly brackets

in the term of placing and use of them. During this research we will go through mainly

three styles of curly brackets in program. One type will be where we skip the curly

bracket especially for one-line statements. Second, we are going to start the curly

brackets on same line. Third, we are going to use the curly brackets on next line. We

call them shortly with -out -curly (WOC), with-curly (WIC), curly-new-line (CNL). We

can see all three categories of curly brackets in Figure 1 in which they are

demonstrated with the help of code snippet Array sum. Figure 1(a) an example of

without curly brackets. Figure 1(b) an example of with curly brackets and Figure 1(c)

is the example for curly brackets new line.

(a) (b)

 (c)

Figure 1. Java snippet to compute Array sum with different style of curly brackets

To comprehend the program accurately and precisely depend upon so many factors

source code, programmers, identifier names [9][10]. Moreover, syntax of the

programming language has been most essential part for understanding a program

11

correctly. The motivation behind this study is to understand the behavior of the

programmers for Programming styles (Different style of curly brackets). Curly

brackets has been a huge part of many programming languages and plays significant

role in comprehension of the program. There has been a huge debate regarding the

use of curly brackets, especially in the context of position of the curly brackets [12].

If the use of curly brackets in different ways can be significant to the speed of code

comprehension this could be vital impact on overall programming comprehension.

To achieve the appropriate and precise results for the study we are going to use an

Eye-Tracker with PsychoPy which is one of the most vital approaches to measure

program comprehension deeply.

1.2 Research Objective, Questions

The main objective of this research to investigate the programmer’s comprehension

when they are going to go through the different style of curly brackets. We are going

to evaluate the effect in behavioral data and visual data and how it makes difference

in these different conditions.

Based on above objective the following research questions are addressed in this

thesis-

RQ1- Does the use of curly brackets in different styles makes any difference in the

term of response time and correctness?

RQ2- Does the use of curly brackets in different style makes any difference in the

term of Visual attention?

1.3 Research Significance

Sometime small problem can lead to big consequences in source code. How the only

two-line code where pre-increment and curly bracket were omitted carouse a

costumer sensitive information leak [10][11]. Therefore, significance of curly brackets

cannot be ignored. As, Evolution of programming languages proceed the use of curly

brackets also proliferated. The strong contribution of Curly brackets in programming

languages like C, C++, Java, Rust, Swift etc. has increased. In C style like

programming language curly brackets are used in many purposes like to define the

scope of variable. Scope rules define the use of variables and extent of its visibly. It

does not play any role beyond its scope [13]. In C, the usage of blocks is used to

organize and compartmentalize code. A code block is a logically linked series of

program statements handled as a unit. In C, a code block is formed by enclosing a

sequence statement between opening and closing curly brackets. Many algorithms

may be implemented with clarity, beauty, and effectiveness using code blocks.

Furthermore, they aid the programmer in better understanding the real nature of

algorithms [13][14]. In addition, After C, C++ which solved the complexity problem,

Java language inherited the legacy of C language. Java comes with a unique feature

of portability and OOP (Object Oriented Programming). Where the entire class

12

definition including all its member belongs between opening curly braces ({) and

closing curly braces (}). Curly brackets used also to define the block of code, method,

and local space. The features like Encapsulation, Polymorphism, Inheritance also use

curly brackets [15]. As, the curly brackets have been a vital part of programming

languages, it is necessary to investigate the effect of these while using different style

of programming based on position of curly brackets.

1.4 Limitations

The study has potential limitations. As our study focuses on use of Curly brackets in

different style. As the study is concern so far is valid for the programming languages

which has the use of curly brackets in syntax basis, e.g., C, C++, Java, JavaScript,

Rust, Groovy, Kotlin, Perl, PHP, Scala, Swift. On the other hand, programming

languages like Python which uses indentation to separate the different block of code.

Although, Python also uses Curly brackets on to generate dictionaries, but our focus

is on the Positional uses of curly brackets. Therefore, our results will not be applicable

for programming languages like Python.

1.5 Research structure outline

The contents of each chapter in this thesis report are highlighted in this section. The

following is a summary of each chapter:

• Chapter 1 (Introduction): The thesis work is introduced in this chapter. This

chapter provides information on the objective, questions significance,

limitations, and thesis structure.

• Chapter 2 (Literature review): Current chapter will give an overview of earlier

studies that are pertinent to this thesis topic. It provides information on

programme comprehension specifics, basic structure of programming, use of

curly brackets in programming, methods for testing programme

comprehension.

• Chapter 3 (Methodology): This section provides the information about

research design, research philosophy, data collection method, data analysis

method, limitations of the design.

• Chapter 4 (Results): This section provides the information on how the results

are interpreted by data analysis method.

• Chapter 5 (Discussion): An overview of the findings and a discussion of

significant study components are presented in this chapter.

• Chapter 6 (Conclusion): This chapter offers the study's conclusion and

discusses the topic's potential future research application.

13

2 Literature Review

2.1 Brief history of Curly brackets

All current programming languages use programming blocks in their syntax.

However, blocks were not included in the first high-level programming language.

Fortran [45], which debuted in 1950, does not support compound statement (blocks).

The function is declared on a single line, rather than in a block of code. Later that

year, in 1950, a new language named ALGOL [46][47] was established, which

featured blocks for the first time. The ability to arrange statements into compound

statements known as blocks is one of Algol's characteristics. Algol used the keywords

"begin" and "end" to indicate the beginning and end of the block. A block may be

nested within another block, with the outer block acting as the dominant block and

the inner block acting as a subordinate block.

BCPL [48], created by Martin Richards at the University of Cambridge in 1967, was

the next shift in the syntax of block-structured language. The reference to BCPL is

offered since C was created as a refinement and upgrade of BCPL by Ken

Thompson's intermediate language named B. Because BCPL was designed to be a

system development language, it was efficient as an assembly language;

nevertheless, syntax must be at a relatively high level to make coding simpler and

more productive. This implies that many elements of the high-level language ALGOL

must be included into languages such as BCPL, although in a more efficient way.

To do this, Richards used the symbol $(for opening and) $ for closing, rather than

(begin and end) for each block of code. Around 1969, Ken Thomson and Dennis

Ritchie at Bell Labs started experimenting with alternative techniques to create an

operating system using a system programming language. Thompson first attempted

to do it in Fortran, but soon abandoned the concept due to technical difficulties. He

decided to change BCPL to make system programming simpler, and so B [49] was

born. Even though B was closer to the system development language, it still did not

suit their needs. As a result, they created another language known as NB (New B)

but it did not last for long time and was soon replaced with an entirely new language,

which they created which is called “C".

Thomson rectified several items in B that carried over into NB and subsequently

C[14], including shorter operators. These were required for the extended language to

fit inside the memory restrictions of the computers of the day. Thompson, for example,

devised a compound assignment operation (+=), as well as the increment (++) and

decrement (--) operators, to improve the language's efficiency. Other BCPL operators

were simplified because of this efficiency shift, such as $ and $ being replaced with

“{“and “}”.

The curly brackets are a required symbol for blocks in several programming

languages, including C++, Java, C#, and JavaScript, which closely follow the C-style.

Curly braces have been adopted by more fascinating modern languages. To include

GO and Rust [16].

14

2.2 Syntax and semantics in programming language

Language enables people to communicate via the use of sounds and symbols that

are written down. Language is something that people pick up as a byproduct of their

experiences in life, but in linguistics, which is the scientific study of languages, the

structures and connotations of words are put through a more in-depth analysis. This

field of study is also applicable to the topic of this text, which is computer programming

languages. Programming languages, in contrast to natural languages, with which we

communicate our thoughts and feelings, can be seen as artificial languages defined

by men and women initially for the purpose of communicating with computers, but

also, and perhaps more importantly, for the purpose of communicating mathematics

among people.

Many of the techniques and terms used in linguistics are also used in programming

languages. For instance, language definitions are made up of mainly two parts syntax

and semantics [51].

2.2.1 Syntax

A programming language's syntax is used to represent the structure of programmes,

but the meaning of the programmes themselves is not taken into consideration. It

entails the usage of a set of rules that verifies the sequence of symbols and

instructions that are used in a programme. In general, rewriting rules are what make

up Grammars, and their job is to produce programmes. Grammar is comprised of a

limited number of grammatical categories, individual words, and rules that are already

formed. These formal and informal methods may be used to understand the syntax

of a programming language [50] :

• Lexical syntax

The rules for fundamental symbols like as identifiers, literals, punctuators, and

operators are defined with the help of these syntax.

• Concrete syntax

The lexical units, also known as tokens, of a computer language are described by

this syntax. It more focuses how the expression looks.

 2 + 3 -- infix

 (+ 2 3) -- prefix

 (2 3 +) -- postfix

 the sum of 2 and 3 -- English

• Abstract syntax

This syntax merely delivers the most important information about the application.

We can see in figure that sum expression has two operand expression in its

significant part.

15

 Figure 2. Abstract syntax example

2.2.2 Syntax Error

A mistake in the syntax of a coding or programming language that was input by a

programmer is referred to as a syntax error in the field of computer science. A piece

of software known as a compiler is responsible for finding syntax errors in a

programme. The errors need to be fixed by the programmer before the programme

can be built and then executed. Because programming languages are designed to be

highly precise and free of ambiguity, we make a syntax error if we fail to respect or

adhere to the vocabulary of the language. Because of this, the software will not be

able to execute, and instead, a helpful error message will be printed.

Figure 3. Syntax Error example

The function above will not compile, and it will give us an error massage as shown in

figure a. Syntax errors are handled at the compile time so it will give us compile error.

The reason of this error in above code is just a missing curly bracket. It would have

given us error any way if we miss any syntax of the language as in Java semicolon,

curly brackets, variable definition are one of the most syntax to work with.

Figure 4. Syntax Error message

16

2.2.3 Semantics

The semantics of a language explains the meaning of syntactically correct sentences.

In the case of natural languages, this entails associating certain words and phrases

with particular things, ideas, and emotions. Semantics is the study of how computers

act when given instructions in a programming language. This behavior might be

shown, for example, by providing a detailed description of how a programme would

run on a concrete or hypothetical computer, or by demonstrating the connection

between the input and output of the code. When trying to understand how the syntax

and the model of computation relate to one another in a programming language, the

word "semantics" is invaluable. It places an emphasis on the interpretation of a

programme such that its results may be easily predicted or understood by the

programmer. Syntax-directed semantics is utilized to use a functional mapping of

syntactic constructions to the computational model. Algebraic semantics, axiomatic

semantics, operational semantics, and denotational semantics are some of the

methods that may be used to explain the semantics of a programming language

[52][53].

• Algebraic semantics

In algebraic semantics, information and linguistic structures are specified using

algebraic notation. The goal of the algebraic approach to semantics is to provide a

formal, axiomatic description of the attributes of various types of objects and

operations on those objects.

• Operational semantic

The idea behind operational semantics is to be able to express the meaning of a

programme beginning from a particular state by looking at its end result, which is the

state in which the memory is left after the execution of the programme. This can be

done by looking at the memory's state after the programme has been run.

• Denotational Semantics

This semantics is based on the assumption that a programme may be seen in the

same way as a mathematical function, that is, the impact of a programme can be

viewed as a mathematical function in state.

• Axiomatic Semantics

 The topic of Axiomatic Semantics is whether or not a particular programme is partially

right (with regard to pre- and post-condition). In order to ascertain the intended

purpose of an application, it constructs assertions about an association to be checked

at each stage of the program's execution (i.e., implicitly).

2.2.4 Semantic Error

 Even if your programme is successfully compiling, it may still be difficult to get it to

generate the results you want from it. When a statement is correct in terms of syntax

but does not have the effect that the programmer intended, this is an example of a

17

semantic error. A mistake in meaning is referred to as a semantic error, as contrast

to a syntax error. If a programme has this sort of problem, it will be able to execute,

but the result it produces will not be accurate. We will understand it with an example

of snippet where we mistakenly input a wrong athematic operation.

Figure 5. Semantic Error example

This program will output Total expense is $140000. This is incorrect; the expected

output is $750. This happens because we use a multiply (*) sign instead of an addition

(+) sign. We can see the quick view of syntax and semantics with a table:

Comparison Basis

Syntax

Semantics

Basic

Permitted phrases of

language

Interpretation of

phrases

Error

Handel at compile

time

Confronted at run time

Relation

Syntactic

interpretation must

have some distinctive

meaning

Symantec component

is associated with

synthetic

representation.

 Table 1. Syntax and semantic comparison.

 2.3 Curly brackets in Programming language

We have discussed in section 2.2 how curly brackets has come into play into

programming language and how programming languages evolved with their syntax

from Fortran to Rust. In this section we are going to discuss the different usage of

curly brackets in programming language and how it has played vital role in

18

programming language for long time [54].

 2.3.1 Scope

Scope is an essential consideration while learning about variables. A variable's scope

is the set of statements in which it may be used. If a variable may be referenced or

assigned in a given statement, it is said to be "visible" in that statement. How a given

name is linked to a variable, or in the case of a functional language, an expression,

is determined by the language's scope rules. In particular, scope rules specify how

the declarations of variables outside the present subprogram or block are linked to

references to those variables (blocks are discussed in Section 2.2.2). When a variable

is only used inside its specified scope, it is said to be "local" to that section of code.

 2.3.2 Blocks

The C-based languages enable declarations to be included in any compound

statement (a series of statements enclosed in matching braces) to establish a new

scope. We refer to these combined statements as blocks. If list were an integer array,

one may write as an illustration:

 Figure 6. Example of block of code

In figure e: code between opening and closing curly brackets is a block of code and

the scope of the temp variable is defined inside the block. As we can see how curly

bracket is vital for one of the most important concepts of programming.

2.3.3 Use of curly brackets in Programming language

The C and C++ and Java programming languages rely heavily on curly braces

(sometimes known as "braces" or "curly brackets"). There are different methods to

denote the beginning and end of a programming structure, such as a loop, procedure,

or conditional expression, in various programming languages. For instance, Java and

C++ are sometimes referred to as curly brace languages since curly braces are used

to designate the beginning and end of a code block. We will also only focus on only

some significant parts of programming language where curly brackets used which are

common for most of the languages. There has been huge significance of curly

brackets in programming languages we are going to discuss some of them [55][56]:

a) Functions

A function is essentially a piece of code that you can use again and over again,

rather than writing it out several times. Functions allow programmers to break

down or divide an issue into smaller segments, each of which performs a specific

19

purpose.

Figure 7. Function example

Here is the example of simple Java function which has a function name

myMethod which is inside a class name Main. We can observe here that after

defining a class name and function name we have to use curly brackets to

construct a function and in the end of function there should be closing curly

brackets.

b) Loops

A loop is a set of instructions in computer programming that is executed over and

over again until some predetermined condition is met. While loop will repeat the

statements within their related block of code until the expression inside the

parenthesis turns false.

Figure 8. Example of while loops

If you need to construct a loop that runs a certain number of times, you may do it

quickly and easily with the help of a control structure called a for loop. Whenever

you have a certain number of times that you need to do an action, a for loop is a

great method to have at your side.

Figure 9. Example of for loop

The Java do-while loop iterates across a block of code repeatedly until a certain

condition is met. Use a do-while loop if you need to run the loop at least once and

20

the number of iterations is not known in advance.

Figure 10. Example of do while loop

c) If/else statements

If a particular condition is true, the if/else statement runs a block of code. If the

condition is not met, another block of code may be run.

Figure 11. If/else statements example

d) Switch statements

The switch statement is a kind of branch statement called a multi-way branch

statement. Putting it more simply, the switch statement in Java allows you to execute

one statement based on many sorts of conditions.

Figure 12. Switch statements example

We have seen so many examples of the use of curly brackets in programming

language. Curly brackets are almost everywhere which makes them significant.

21

There are other uses of curly brackets as well for example defining an array.

2.3.4 Placement of curly brackets

We have seen in section 2.2.3 that how curly brackets are used widely in

programming languages but one really important question about those is which

placement of the curly brackets is important for programmer to understand the

program better. Using proper programming style may lead to the creation of superior

software. A well-written style makes source code easier to read and comprehend,

which in turn may minimize the number of mistakes and make it simpler to maintain

[57]. There might be three possible placement conditions of curly brackets. First,

placing curly brackets from same line. Second placing curly brackets from next line

and last omitting curly brackets when not needed especially for single statements.

There have been many thoughts on the placing of curly brackets. Some believe that

they want to use curly brackets in every condition even though that is single line

statement or not, they think with this readability and maintainability of code

maintained [58]. Some people, believes that starting curly brackets from new line

makes code cleaner and easier to understand [59]. One more suggestion which

focuses on using brackets from same line as it reduces the line of code [60].

 (a)

 (b)

 (c)

 Figure 13. Example of curly brackets

We can see Figure 13 (a) shows the snippet missing curly brackets, Figure 13 (b)

shows the code has brackets from new line at last, Figure 13 (c) using brackets in

same line.

22

 2.4 Program Comprehension

In the software development process, understanding the code is crucial. An improved

knowledge of programme comprehension would aid in the creation of technologies

and tools that streamline this process, saving both time and money. Comprehending

a programme is a difficult cognitive process that can only be quantified via carefully

designed studies. There are numerous approaches to measure program

comprehension, here we discuss the following [17].

 2.4.1 Think – Aloud Protocol

For almost a century, self-reporting techniques have been used to observe cognitive

processes. One such way is to think aloud. Subjects are asked to express their

sensations, feelings, and thoughts while doing the study. The session is either audio

or video recorded [18].

Two roles exist in the Think-aloud method: observer and subject. The observer takes

notice of the subject's spoken communication. In software engineering study, data is

gathered from just one participant at a time; the number of individuals is often

relatively small [19].

 2.4.2 Memorization

Memorization tests provide participants a code fragment to explore for a certain time.

Subjects are then asked to remember as much of code as they can. Allowing

developers to memories source code to test their understanding may seem unusual

today, but it's a vital component of the development process.

The researchers investigated the effect of priming on response time. Priming is the

act of responding fast to a target stimulus if you have previously experienced a

comparable stimulus. Participants were asked to recollect code snippets supplied by

Soloway and Ehrlich to developers. The study discovered that skilled programmers

relied more on coding standards such as sensible variable names[20][21].

 2.4.3 Comprehension Tasks

Another job for programmers in the Soloway and Ehrlich research was to fill in a left-

out line to properly finish the source code, referred known as "fill in the blanks."

Developers can only complete the software properly if they first understand it. He

measured correctness and response time of participants. Since this task explicitly

requires participants to understand source code, it is more direct than requiring

participants to memorize code. He found that different operators lead to different

response times, and that statements that are true are processed faster [20][21].

2.5 New techniques to measure program comprehension:

2.5.1 Eye tracking:

In 1990s when Eye tracking was first used in software engineering. Researcher study

model comprehension, program comprehension, debugging traceability. Eye-

23

tracking technology in program comprehension is used by software engineering

researchers to analyze the cognitive processes and efforts involved in various sorts

of Software engineering activities. Using eye-movement data, an eye tracker

(hardware and software) measures a participant's visual attention. Eye movements

are vital to cognitive processes because they direct the participant's visual attention

to the elements of a visual stimuli that the brain analyzes. Visual attention activates

cognitive processes necessary for task completion. It is also a surrogate for visual

effort, which is a subset of cognitive effort, and is assessed as the amount of visual

attention assigned to various portions of a visual input. In software engineering

experiments, the stimulus is shown on a computer screen [22].

There are several eye-tracking methods available for monitoring eye movement.

Video-based tracking, infrared pupil-corneal reflection, and Electrooculography

Scleral contact lens/ Search coil based tracking are the three most used ways. Pupil

Center Corneal Reflection is the most prevalent method employed by contemporary

eye trackers (PCCR). It employs a near-infrared camera or other optical sensor for

gaze tracking. In this technique, near-infrared light is focused into the pupil, or the

center of the eye, causing visible reflections in the cornea that are recorded by a

camera. PCCR is most often used in remote, non-intrusive eye trackers. Eye trackers

catch eye movement by illuminating the eye with a light source that creates visible

reflections. It captures eye images with a high-resolution camera to display these

reflections. Then, this eye picture is utilized to determine the light source's reflections

on the cornea and pupil. The vector generated by the angle between the cornea and

pupil reflections is then computed, and based on this data, the direction of gaze is

determined [23].

2.5.1.1 Different kind of Eye tracking devices current time:

a) Screen based remote eye tracker:

These types of Eye Trackers require the respondents/participant to sit in front of a

screen to interact with the stimuli or screen based content. Remote ET systems track

the eyes within certain limits called headbox, but the eye movement freedom is

sufficiently large and the respondents feel unrestricted. These eye trackers records

eye movements at a distance. Unlike other Eye trackers participants do not need

wear any equipment’s on head. These eye trackers are mounted to the computer

screen. Participants sit in a front of computer screen to gather the eye tracking data.

Figure 14. table mounted eye tracker[25]

24

b) Head mounted or mobile eye tracker:

These are placed in close proximity to the respondent's eyes and do not restrict their

mobility in any way. These are used in the event that your research requires

participants to carry out activities in a natural setting. On the other hand, glasses may

move about while the recording is being done. These eye trackers are able to capture

eye movements from a very near distance. These are often attached to frames that

are made of a lightweight material. The responder is free to wander about while

wearing these eye trackers, which is still another benefit of using them [23].

Figure 15. Head mounted Eye tracker
2.5.1.2 Terminology

Eye tracking systems capture gaze points that indicate where a participant is gazing

on a stimulus. These gaze points may be used to infer information about the

participant. Devices that are considered to be state-of-the-art are able to achieve

speeds of between 60 and 500 Hz or even higher. The recording rate determines the

number of gaze points that are captured in a single second. The following will provide

a distinction between the various data kinds as illustrated in Figure 1, as well as

information on each type.

Figure 16. Demonstrates the Gaze points, Saccades, fixations. AOI(Area of interest), transition between

AOI, and Scanpath.

25

• Gaze points

The basic units of measuring the eye movements are gaze points, one gaze point is

one row captured by the Eye tracking devices.

• Fixations

Fixations are eye movements that stabilize the retina over an item of attention that

remains motionless. A fixation is a cluster of gaze locations that are intended to be

near in time and space. Fixation is the duration during which our eyes are fixated on

a certain sensory item. Fixation time is typically between 100 and 300 milliseconds.

• Saccades

A quick eye movement that shifts the focus of the visual axis to a new position is

referred to as a saccade. The phrase originates from an ancient French word that

literally translates as "flick of a sail." Saccades are the quick eye movements that

occur between fixations and have their own specific name. The length of a saccade

may vary anywhere from 30 to 80 milliseconds, which is an amount of time that is

sufficiently brief to make the executioner virtually blind throughout the transition. Most

saccades are performed voluntarily. Micro-saccades, on the other hand, are short,

jerky eye movements that are involuntary and occur during lengthy fixations to refresh

the participant's visual memory.

• Pupil Dealation

The dilation of the pupil, which makes it possible for more light to enter the eye when

the surrounding light levels are low. It may also occur if a participant's mood or attitude

changes, as well as whenever they are asked to do complicated cognitive activities.

• Scanpath

The scanpath was first defined by David nation and Lawrence in 1971. A sequence

of fixations that are recorded in the order in which they occurred and depict the

participant's pattern of eye movement.

 Figure 17. Scanpath on code snippet.

• Heatmap

A heat map is a visual representation of the distribution of visual attention that is

generated by the accumulation of fixations and gaze locations, which may be either

26

static or dynamic. Heat maps are a wonderful approach for visualization; they indicate

the areas of the stimulus that have received the most attention. The color-coding

technique used in heat maps is simple and easy to understand. The red region has a

large number of gaze points, which indicates an enhanced degree of interest. On the

other hand, the yellow and green areas signal toward less visual attention being paid

to them.

Figure 18. Heatmap example

• Area of interest (AOI)

Areas of interest (AOI) are designated by the user as subregions of a stimulus

item shown on the screen. Metrics for differentiating AOIs are based on the

performance of two or more locations in the same image, website, or program

interface [28][29][30].

2.5.1.3 Representative algorithms for saccade and fixations

This section describes the three two main algorithms to detect the fixations and

saccades. There are many algorithms to detect fixation and saccades as we

discussed in earlier section, but our goal will be detection fixation and saccades

accurately without less noise.

• Fixation detection (Dispersion – based algorithm)

The raw data exported from the eye tracker's software is used to figure out the

fixation sequences. When this information isn't in the data, the dispersion-based

27

threshold identification (I-DT) algorithm is used on the gaze data to find the

fixations (Salvucci & Goldberg, 2000). The first step is to choose a window in which

to figure out the dispersion D. We use a window size !!"#$%" of 50 ms as the

minimum time for a segment to be considered a fixation. Using the minimum

window size, W = !!"#$%", we can figure out the dispersion using Eq (1). Gx and

Gy are the gaze position vectors on the x and y axes for a given window, and D is

the window's dispersion. If D <= "!"#$%", the size of the window is increased by

one, so W = W+1, and the last step is done again. Lastly, if D> "!"#$%" and

W>!!"#$%", all the points in the window except for the last one is considered to be

part of a fixation sequence. Then, the window is reset to Wthresh and starts at the

first point after the last fixation sequence.

D = #[%&'()&) −%,-	()&)]' + [%&'1)(2 −%,-	()()]' (1)

 After this fixation count, maximum duration, and average duration are extracted.

• Saccades and microsaccdes detection (Velocity – based algorithm)

When capturing data from an eye tracker, the program will often flag saccade

sequences. The velocity-based threshold identification (I-VT) approach is used for

data in which the saccade sequences are unlabeled. The procedure begins by

determining the pointwise velocity of the gaze data. We call movements of points

faster than around 40 pixels per second "saccades." Using gaze data, the

velocities may be calculated as shown in Equation (2). Vt represents the x or y

velocity at time t, and Gt represents the x or y gaze location at time t in the equation.

3! =)! −)!)* (2)

First, determine velocity from gaze data using a moving average (Equation) (3a).

Calculate 3!"#$%" using Equation (3b). All points with k > 1 are part of a

microsaccade sequence if the sequence has at least six samples. The

microsaccade sequence's velocity and amplitude are computed using Equation

(3d & e). Last two equations compute saccade velocity and amplitude. (3): 3! is

the x- or y-axis velocity at time t;)! is the gaze location; 5+#$, is the eye tracker

sampling frequency. 3!"#$%" is the microsaccade threshold velocity in the x or y

axis; 3+-. is a constant value used to calculate the microsaccade threshold velocity

(default value is 5); 366⃗ is the velocity vector in the x or y axis;)66⃗ is the gaze position

vector in the x or y axis; 3/$-0 is the microsaccade sequence peak velocity; and A

is the microsaccade sequence amplitude.

3! = ()!1' +)!1* −)!)* −)!)') (8 ∗ 5+#$,): 3(a)

3!"#$%" = 3+-. ∗ #;<=>?@((366⃗ − ;<=>?@(366⃗))') 3(b)

28

k = (3&6666⃗ /3&!"#$%")' + (3(6666⃗ /3(!"#$%")' 3(c)

3/$-0 = %&'	(#3&6666⃗ + 3(6666⃗) 3(d)

 A =#[%&'1)&6666⃗ 2 + %,-	()&6666⃗)]' + [%&'1)(6666⃗ 2 − %,-	()(6666⃗)]' 3(e)

In our study we have taken the help of these algorithms to detect the fixations and

saccades.[32]

2.5.1.4 Different Eye Tracking Matrices

 Researchers in SE, while planning an eye-tracking study, must choose appropriate

metrics to quantify the visual effort that are indicative of the activities and stimuli being

examined. The names, definitions, and applications of many visual-effort measures

from prior research are provided. We classify metrics as either (1) fixation-based, (2)

saccade-based, or (3) scanpath-based.

 1. Fixation based matrixes:

• Fixation Count

Each AOI's total number of fixations is referred to as its "Fixation Count" (FC). By

dividing the total number of fixations by the total number of words in the text, the

number of fixations may be made proportional to the length of the text.

• Fixation rate

Fixation Rate (FR) is the number of fixations in the area of interest (AOI) divided

by the area of glance (AOG). AOG can be the whole stimulus or another AOI to

calculate the ratio of the total number of fixations in one AOI to all fixations or

the ratio of fixations between two AOIs.

• Average fixation duration

Average Fixation Duration (AFD) is the sum of the durations of all the fixations

divided by the number of fixations.

2. Matrix based on saccade

• Regression rate

Regressions Rate shows how often saccades of any length go backward. Few

regressions are a sign of a good reader, so a high rate of regressions means that

the participants have trouble reading and understanding a stimulus [29].

29

 2.5.1.5 Eye tracking studies in Program comprehension

At the beginning of the 1990s, people in the software engineering field became

interested in eye-tracking technology as a way to study the reading strategies that

people use to understand programs. The first eye-tracking study in software

engineering was done by Crosby et al. [Crosby and Stelovsky, 1990]. They

investigated how different ways of reading affect the ability to understand procedural

code.

 Figure 19. Histogram of publication of journal articles, conference paper and books in Eye-tracking

Figure 19 shows number of eye tracking studies published in recent years, and it has

strongly increased in last decade. Some eye tracking studies in program

comprehension are discussed below.

• [Bednarik and Tukiainen, 2006] gives a way to visualize Java source code

and looks at how programmers use both the source code and the

visualization [35].

Artifacts Three Java source codes of

factorial (15 LOC), recursive

binary-search (34 LOC), and

naive string matching (38 LOC)

Participants 14 students

Eye tracker Tobii 1750

Variable (DV) Time and attention switching

Variable (IV) Code vs Visualization

Variable (MV) Not mentioned

Table 2. Bednarik and Tukiainen study on code comprehension [33]

30

• [Busjahn et al., 2011] performs an experiment to investigate the

differences between source code reading and natural text reading [36] .

Artifacts Java source codes

Participants 14 (not mentioned the type)

Eye tracker Tobii T120

Variable (DV) Time, number of characters, and

number of elements

Variable (IV) Source code vs. natural language

text, and different source code parts

including: operator, key- words,

identifiers, and numbers

Variable (MV) Not mentioned

Table 3. Busjahn study for code comprehension [33]

• [Busjahn et al., 2014] studies attention distribution on code elements to

differentiate experts’ and novices’ code reading strategies [33].

Artifacts Eleven Java source codes

Participants 15 professionals

Eye tracker Tobii T120

Variable (DV) Time

Variable (IV) Code elements (identifiers,

operators, keywords, and literals)

Variable (MV) Expertise

Table 4. Busjahn’s study for code comprehension [33]

31

• [Rodeghero et al., 2014] conducts an eye-tracking study and use its

findings to build a code summarization tool [40].

Artifacts 67 Java methods from six different

applications: NanoXML, Siena,

JTopas, Jajuk, JEdit, and JHotdraw

Participants 10 professionals

Eye tracker Tobii TX300

Variable (DV) Fixation number and duration,

Fixation Time, and Number of

regressions

Variable (IV) Task difficulty (easy and hard)

Variable (MV) Not Mentionen

Table 5. Rodeghero study for code comprehension [33]

We have discussed most of the studies done to understand program

comprehension. We have mostly included the studies which uses Tobii as an

Eye tracker because in our study we are also going to use Tobii eye tracker to

understand program comprehension.

2.5.2 EEG(Electroencephalogram)

An EEG is a device which works on electrical activity that originates in the brain and

is recorded using electrodes put on the scalp. The electric potential of the brain is

measured as the difference between two electrodes. Each electrode is put on a

position designated by the International 10-20 system, which is shown in Figure 1.

Except for the electrodes defining ground potential, the 10- 20 system specifies 19

electrode locations [41].

(a) (b)

 Figure 20. a) Participant wearing EEG (b) International 10-20 system of electrode

32

2.5.3 fMRI (Functional magnetic resonance images)

Since 1991, researchers in neuroscience have used functional magnetic resonance

imaging (fMRI) to study cognitive processes. FMRI is based on monitoring changes

in blood. The findings may be utilized to deduce which brain regions are involved

cognitive functions.

 Figure 21. shows workflow of fMRI [42]

Norman Peitek and Janet Siegmund have provided the workflow of fMRI in their

study. That we can see through the image 6. Where they have studied program

comprehension with fMRI [42].

3 Methodology

As there has been lack of research in the term of curly brackets in program

comprehension which we have discussed in section 1.1. So, it is important to study

curly brackets in programming in a stronger approach. We have already discussed

about our aim and objective that we are doing to see how the different style of curly

brackets makes any difference on response time, correctness, and visual attention.

In this chapter we are going to focus on our research plannings to achieve the

required results we need.

 3.1 Research planning

Planning experiments ahead of time is essential for achieving reliable results. Having

a clear research objective and well-crafted experiment materials are crucial in the

planning and conceptualization stages of any experiment. In this chapter, we will look

at some of the additional factors that should be considered while designing an

experiment. We have planned our experiments in some following steps. Research

material, Participants for research, Tools and technology used, Research design,

Analysis procedure.

 3.1.1 Research Material

Code snippets are presented as experimental materials in this study. Code snippets

are often the decisive element in the success or failure of an experiment designed to

33

assess participants' program comprehension. Inappropriate code snippets for a

certain research goal would provide inaccurate findings. Here, we provide a high-

level overview of how the study's code snippets were created and selected.

3.1.1.1 Snippets Generation

Code snippets are generated in Java. We have chosen Java because it mostly covers

all the vital properties where we can explore curly brackets. Code snippets are

generated in the way that it can be reused for other experiments in future as well.

Before we have generated 12 code snippets and because certain snippets did not

meet our standards due to their length and complexity later, we have selected only 8.

Total 8 code snippets are generated are following- ArraySum, BubbleSort,

NumberCheck, ContainsSubstring, Power, BinaryConversion, MultiplyMatrix, Prime

number. There has been limit of lines to create code snippets, maximum 35 lines.

The code snippets are created in two parts and main three categories. Two vital parts

are, First the calculation part of snippet and second the whole snippet with main

function. Three categories of the snippets are with-out-curly (WOC), with-curly (WIC),

curly-new -line (CNL).

So, we have generated total 48 snippets. We will know more about our snippet

generation in section 3.3.4. We have used IntelliJ IDE to create code snippets. All

snippets have been checked for errors and correctness.

Snippets

Without curly

With curly

Curly new line

LOC

Response
Time(s)

LOC

Response
Time(s)

LOC

Response
Time(s)

ArraySum 12 41 13 64 17 64

BubbleSort 17 91 19 115 25 74

NumberCheck 19 65 21 51 27 74

ContainsSubstring 25 75 26 91 33 92

Power 13 66 14 68 16 48

BinaryConversion 17 76 18 52 23 86

MultiplyMatriix 24 83 26 84 34 113

PrimeNumber 22 51 24 51 32 51

Table 6. All snippets used in this study and their corresponding response

3.1.1.2 Snippets Selection

 After the snippets generation we need to select the snippets for our study. Snippets

selection process is necessary because snippets are our base of study. Inappropriate

34

selection of snippets may lead to flaws in study. To select the snippets appropriately

we have defined some criteria as followings-

• First, snippets should be easy to understand, our focus is on structure of the code

 instead of difficulty level. So, the snippets should be easy not extremely complex.

• The snippets should reflect well-known ideas covered in the early stages of the
programming course. More sophisticated notions may perplex the participants.

• As the snippets should be easy, at the same time snippets should be challenging
 enough. The scenario should not happen that participant has solved the problem just

 looking at it once. Snippets should be bit challenging that we can record the eye

 movements for our study.

• As our study is on effect of curly brackets so, snippet should contain operations like,
for loop, if statements, OOP (Object-Oriented Programming) and functions. With this

selection criteria we can explore curly brackets more strongly because all these

operations need curly brackets to be used in programming language.

• Length of the code snippets must not be greater than 35 lines, this is because we do
 not want to give trouble of scrolling to the participant while doing the study

3.1.1.3 Code snippet Example

We are going to show an example of code snippets we have selected for our study.

We can see the snippet example what we have used for our study. Figure 22 is the

example of missing curly brackets when there is no need of them. We call them in

research WOC (without-curly). Figure 23 shows our next type where we use all the

brackets, but brackets start from the same line. We call them WIC (with-in-curly).

And last the Figure 24 is the example of where we use curly brackets but from next

line. We call them CNL (curly-new-line). We will discuss more about this in study

design section 3.3.4.

35

Figure 22. Snippet Example of ContainsSubstring (WOC)

Figure 23. Snippet Example of ConatinsSubstring (WIC)

36

Figure 24. Snippet example of ContainsSubstring (CNL)

3.1.2 Participants for research

 The influence of curly brackets on programmer’s behavior is investigated in this study

 using data acquired from the study. The involvement of the appropriate participants

 are critical for the research to provide usable and meaningful findings. Inappropriate

 participants may provide undesirable findings and possibly lead the research to fail.

 The participants are chosen on the conditions that they have basic knowledge bout

 java programming. Knowledge of programming fundamentals, data structures,

algorithms, and a basic comprehension of the java programming language is

adequate to complete the survey's programming assignments.

Distribution Participants data

Male 12/20(60%)

Female 8/20(40%)

Average age(years) 29

Average experience in java(years) 1.8

Average professional experience 2.1

Table 7. Demographic data of the participants

37

An online invitation sent for the participation in the study, if only they are interested in

the study they come. Especially, university programming student groups was the

source to find the participants. Before the study starts each participant has been

informed about the study and how it works. Participants came to university and

performed the test in university lab. We have included total 20 participants in our

study.

3.1.3 Technologies and tools used

The experiment plane's execution necessitates the employment of a variety of tools

and technology combinations. Each instrument or technology serves a specific

purpose and operates at different phases of experiment implementation. Some of the

most significant techniques and technologies employed in this research are as

follows:

1. PsychoPy

 We have used PsychoPy program in our study. PsychoPy is a program that enables

users to design experiments in the field of behavioral science (which includes fields

like psychology, neurology, and linguistics) with fine-grained control over the location

and timing of stimuli. Users have the option of using either the traditional Python

scripting interface or the brand-new graphical Builder interface to create their

experiments. PsychoPy's main features are geared on managing the presentation

and timing of stimuli.

• Builder in PsychoPy

The builder in PsychoPy allow user to create a graphical representation of an

experiments. In PsychoPy Builder, an experiment is described by a set of routines.

Each routine has one or more components, such as stimuli and possible responses.

An image of the Builder interface can be seen in figure 25.

Figure 25. Builder interface PsychoPy

38

 The way PsychoPy builder talks to you. The components that can be added to the

experiment are listed in the right-hand panel. They are grouped into categories that

can be expanded or shrunk. These components can be put into routines and show

up in the routine panel as "tracks." In this demo, in the routine named "trial," we just

show a word after milliseconds pause and start watching the keyboard for responses

at the same time. However, any number of components can be set to start and stop

at the same time or at different times. The bottom panel of the interface shows the

"Flow" of the experiment. This is the order in which the "Routines" will be shown, as

well as any "Loops" that can be used to repeat trials and/or blocks and control the

randomization of conditions. Users say that this view makes putting their experimental

designs into action very easy and gives them a lot of freedom.

The builder reaches its goal by being easy to use for teaching, flexible enough for

high-quality experiments, and accurate and precise.

 Figure 26. more complex flow arrangements

Figure 26 shows more complex flow arrangement. Loops and Routines can be nested

in arbitrarily complex ways. PsychoPy itself is unconcerned about whether a Loop

designates trials, a sequence of stimuli within a trial, or a sequence of blocks around

a loop of trials, as above. Furthermore, the mechanism for each loop is independent;

it might be sequential, random, or a something more complex, such as an interleaved

staircase of trials [43].

2. Eye Tracker

We have used a table mounted Tobbi Pro Fusion Eye-Tracker in our study. We have

discussed about Eye-Tracker in section 2.5. Where we have discussed Eye-Tracker

functions, their types and function of different eye trackers.

 3.1.4 Research Design

Keeping in mind that the purpose of this research is to investigate how different style

of curly brackets influence programmers' behavior in terms of response time,

correctness and visual attention during program comprehension, the following factors

are described:

• Dependent variables

Dependent variables in our study are participant’s response time, correctness, and

visual attention while program comprehension. Response time is a time that

participant took to comprehend the snippet and time it took to click on the output.

Correctness is a percentage of correct answer participant gave during the study.

Visual attention is the factor that which tells us where and how long participant look

39

to comprehend the snippet.

• Independent variables

Independent variables in our study are code snippets with different style of curly

brackets (WOC, WIC, CNL). Without curly bracket (WOC) is a type of snippet where

curly brackets are missing for where it is not so useful to use especially for single line

statements. Within Curly bracket (WIC) is the type of snippet where all the curly

brackets are used but all curly brackets start from same line. Curly bracket new line

(CNL) is the type of snippet where all required curly brackets are used but each curly

bracket start from new line.

The goal of this study can be expressed as a research question:

RQ1- Does the use of curly brackets in different styles makes any difference in

the term of response time and correctness?

RQ2- Does the use of curly brackets in different style makes any difference in the

term of Visual attention?

After defining the research questions, we can generate two types of hypotheses null

hypothesis and alternative hypothesis:

• B2(C) : There is no difference in the term of response time and correctness when

we use different style of curly brackets in program comprehension.

• B*(C) : There is a difference in the term of response time and correctness when

we use different style of curly brackets in program comprehension.

• B2(D) : There is no difference in the term of visual attention when we use different

style of curly brackets in program comprehension.

• B*(D) : There is a difference in the term of visual attention when we use different

 style of curly brackets in program comprehension.

 3.1.4.1 Within Subject Design

After defining variables, research questions and hypothesis we are going to define

choice of our study design which is within subject design [44]. In this design we make

sure that each individual participant goes through all the condition, but it does not see

the repeated code snippet even though it is in same code in different style. We can

understand it with our study example. We have created three combinations for our

study Combination 1, Combination2 , Combination 3. That we will see in Table 8.

We can see in each combination there are 8 snippets. The participant see snippet in

the order same shows in the table. Algorithms are going to be same in order but for

every combination there will be change in style of curly brackets used. Each snippet

will be shown in two parts; First part will be calculation part and in second part

participant will see the whole program with main function. We will see that in detail

40

in next section with visual example.

Figure 27. Visualization of our experiment design

We have described our experiment design in Figure 27. Where we can see first

participant is going to see the instructions about the experiment where participant will

understand about whole experiment process. Then one combination will be

automatically selected for each individual participant’s as shown in Table 8. We have

generated the combinations in the format that each participant goes through all the

possible conditions but do not see the same snippet again. As we can see in Table

8. This way we were able to differentiate between each participant and later we have

grouped the participant according to combination they see.

Instructions
Combinations
Randamization

Algorithm1 Algorithm2 Algorithm3 Algorithm8

Table 8. Shows the combinations used to conduct the study

Combination1

Combination2 Combination3

ArraySum(WOC)

ArraySum (WIC) ArraySum(CNL)

BubbleSort(CNL)

BubbleSort(WOC) BubbleSort(WIC)

NumberCheck(WIC)

NumberCheck(CNL) NumberCheck(WOC)

ContainsSubstring(WOC)

ContainsSubstring (WIC) ContainsSubstring(CNL)

Power(CNL)

Power(WOC) Power(WIC)

BinaryConversion(WIC)

BinaryConversion(CNL) BinaryConversion(WOC)

MultiplyMatrix(WOC)

MultiplyMatrix(WIC) MultiplyMatrix(CNL)

PrimeNumber(CNL)

PrimeNumber(WOC) PrimeNumber(WIC)

41

3.3.5 Research setup

This section provides the details about tool and technology setup to conduct the

experiment. How the experiment created with PsychoPy and how both Eye-Tracker

and PsychoPy setup together to conduct the study.

a) Setting up PsychoPy: We have discussed PsychoPy in detail in section

3.3.3. We have used it in our study to generate the "questionnaire" for our

participants.

Part 1 of the builder in our experiment is shown in Figure 28, and Part 2 is

shown in Figure 29. We will explain each routine and loop in detail in this

section.

Figure 28. Builder with control flow of our experiment (Part1)

1. Code initial: This is the first routine of our experiment. In this routine we have

written python script for importing our file and starting the experiment. We have

used costume section of the builder which is provided by PsychoPy in its

component section.

42

Figure 29. Builder with control flow of our experiment (Part2)

2. Welcome Screen: Welcome screen is a second routine where we have written

welcome regards for our participant. We have used text stimuli from

components section of builder to put the text on the study experiment.

3. Instructions: In instruction section we have used again text stimuli to explain

the experiment to the participant where he/she get to know about the process

of the research and how to test is going to conducted.

4. Demo1, Demo2: In this routine there is a demo image for the participant

before and experiment so they can get familiar with the experiment more.

Demo1 contains an image with calculation part of snippet ad demo2 contains

whole snippet with main function. This section is same for every participant.

We have used image stimuli from the component to build this part.

5. User response demo: In this routine, we have created a demo response for

the participant where they must choose from two options. To generate this

part, we have used two responses from components. The mouse and the

button.

6. Start: In this routine we have added a best wish for the student in the text form

where we have added text stimuli from the components.

7. Eye Tracking setup: In this section we have synchronize the eye tracking

device with the PsychoPy with the help of custom code section in components.

43

Figure 30. Shows eye tracking code setup with PsychoPy

8. Randomization: In this routine we can select a random combination for our

participant. So, there is equal study for all the combinations.

9. Loop(trail2): This is the inner loop in flow diagram which contains two

routines. First is update index which update the index of the upcoming stimuli

and second is the stimuli we want show our participant. We created this loop

because we have 16 images. First part is the calculation part, and second part

is whole program, but we have only 8 algorithms. The inside loop runs those

two images first and then goes to the participant response part.

10. Loop(trail): This loop is outer loop for running all 16 images. It runs 16 times.

It contains that inner loop and one more stimulus that is user response or user

input where user choose their answer.

11. Eye tracking end: This routine is outside both loops and in this we save the

eye tracking data back to the file. So, we can use that data for analysis.

12. End: This routine is end part of the study where we thank the participant for

their participation. We have used text stimuli in this.

b) Setting up Eye tracker: Eye tracker is an essential part of our study will give

us data for required dependent variables which are response time,

correctness, and most important visual attention. Therefore, we need to setup

eye tracker in most accurate way. We have used table mounted Tobii eye

tracker for our study with 120 Hz frequency. To setup table mounted eye

tracker, we need the desktop monitor to mount on. We have used AOC

monitor with the resolution of 1920*1080(width*height). Here are the steps to

setup the eye tracker.

44

1. Placing Eye tracker: First step of the setting up eye tracker is fixing eye

tracker with monitor. Eye tracker is fixed on the bottom of the monitor. Table

mounted eye tracker provide us the point of regard for that it is important the

position of eye tracker where we can get the perfect angle with the participant

eyes.

 Figure 31. Placing an eye tracker

 Figure 32. Participant’s position for study

2. Eye - Tracker Calibration: After placing eye tracker participants was invited

to do the test. First participant was told to sit on the chair and fix their head

position according to eye tracker position. Tobi eye tracker gives the steps for

calibration. First, we get the help from the screen to adjust our head position,

according to the screen suggest.

45

Figure 33. Adjusting head position with eye tracker

Screen shows us a square block where we need to fit our head so our eyes

can be perfectly fit to screen. Second step is, user ask to look at specific points

on the screen also known as calibration dots. During this period several

images of eyes are collected and analyzed. The resulting information is then

integrated in the eye model and the gaze point for each image sample is

calculated.

 Figure 34. Calibration dots

46

 Figure 35. Calibration for left eye

Figure 36. resultant image for calibration

In Figure 34 we can see the calibration dots eye tracker place those dots in all

direction of the screen to get the gaze data more accurate. We can see the

dots with numbering on it. This is the sequence eye tracker display those dots

one by one. When the method is completed, the quality of the calibration is

represented by green lines of varied length. We can see figure 34 the length

of each line shows the offset between each sampled gaze point and the

calibration dot's center. Large offsets (long green lines) may be caused by a

47

variety of circumstances, including the user not concentrating on the point,

being distracted during the calibration, or the eye tracker not being properly

set up. In Figure 35 we see the calculation for left eye and the same calculation

goes for the right eye. After that we can see the resultant image for calibration

in figure 36 where we can see calibration points where left eye gaze points

and right eye gaze points fall together in one circle. If points look together and

not distracted from each other than the calibration seems good. However, if

points are not seeming together and looks all over on the screen that means

the calibration is not perfect in that case, we need to recalibrate the eye

tracker.

c) Final setup: As we have seen earlier the PsychoPy is set up accurately and

eye tracker is also set up accurately, in this step we start our study by pressing

the run button on PsychoPy. After that participant need to fill the information

about him/her name and session number. In this study we have told participant

to not enter their actual name, instead of actual name we have given the name

in the form User 1…. User n. We can see in figure 37 that participant has filled

the information about them. Participant section is the participant’s name that

is User1 in this case, and session number is which combination they are using,

we have kept the session number always 001 because we already know which

participant have seen which combination.

 Figure 37. Start of study

 3.3.6 Data collection Method

After experiment is done data is saved automatically in the .csv file for each

participant. We have discussed that while setting up PsychoPy. In the section

end of Eye tracking where data will be saved back to the .csv file. We have

collected the important parameters like ‘left gaze point validity’, ‘right gaze

point validity’,’left gaze point on display area’, ‘right gaze point on display

area’,’system time stamp’, ‘left pupil diameter’, ‘right pupil diameter’. These are

saved in a file with the column name. After that this .csv file is imported in

Jupiter notebook with python script. After cleaning the data, important eye

tracking matrixes like, fixation detection, saccade detection has been

calculated. Later heatmaps, fixation points and scan path has been drowned

on the snippets. In next chapter we are going to discuss how the results and

data analysis has been performed.

48

4 Results and data analysis

Details on carrying out the experiment and gathering data are presented in the last

section. Here, we’ll go over data analysis and data cleaning.

4.1 Preparation of data set

The work of preparing the data set before beginning the analysis is rather crucial. We

should get rid of any data that is erroneous or unnecessary if we want the findings to

be accurate. In our technique of data collecting, which we mentioned in the chapter

before this one, we have acquired data from the participants, and some of the data is

not sufficiently accurate to be included in the data analysis. To exclude irrelevant

information from the data, we have established a cutoff point, which states that an

individual will be considered an outlier if they spend less than 30 seconds on the

snippet and choose responses that are not correct.

During the process of data preparation, we found the data which done not fall into our

criteria which are shown in Table 9. There are two columns in table participants and

Snippets. In participant column we have participant names which are User15, User12

and User14 and in the next column we have corresponding snippets. We could not

take those snippet’s data into analysis because they fall into the condition of outliers.

4.2 Behavioral Data

RQ1(Response time and correctness): If the use of curly brackets in different styles

makes any difference in the term of response time and correctness. After

preprocessing of data, we are ready to go with further process. The data obtained

from the survey is organized into the table, which will be analyzed to produce

acceptable scientific conclusions.

The formulated data sets are organized into a table where we can see the multiple

values of data sets. They are demonstrated in following Table 10:

Participants Snippets

User15 BubbleSort (CNL), ConatinsSubstring (WOC)

User12 ArraySum (WOC)

User14 ArraySum (CNL)

Table 9. Shows all outliers corresponding participants and Snippets

49

Table 10. Complete list of research snippets, together with average response time (in seconds) and

accuracy (in percent) across all three categories: Missing curly brackets, with curl brackets same line,

with curly brackets new line.

4.2.1 Descriptive Statical analysis of behavioral data (Response time):

Table 10 summarizes the behavioral data, which is divided into three categories. The

table shows the individual average for each snippet in all different format and shows

overall average for all three formats.

We are going to discuss our RQ1: research question one in two parts in first part we

are going to discuss how the response time is going to behave in all three categories

(discussed in table 10). Second, we are going to evaluate the effect in term of

correctness, how it makes difference in all three formats.

 Without curly

 With curly

 Curly new line

Snippets

Response

 Time

 (ms)

Correctness

 (%)

Response

 Time

 (ms)

Correctness
(%)

Response

 Time

 (ms)

Correctness

 (%)

ArraySum

41 ± 22

100%

64 ± 29

83%

64 ± 14

100%

BubbleSort

91 ± 46

67%

115 ± 59

86%

60 ± 22

100%

NumberCheck

65 ± 34

86%

51 ± 18

100%

74 ± 36

67%

ContainsSubstring

75 ± 22

71%

91 ± 31

83%

92 ± 27

71%

Power

66 ± 26

33%

68 ± 26

57%

48 ± 26

88%

Binary Conversion

76 ± 29

86%

52 ± 28

88%

86 ± 28

67%

Matrix Multiplier

83 ± 57

67%

84 ± 37

50%

113 ± 55

29%

PrimeNumber

51 ± 28

67%

51 ± 28

43%

51 ± 28

75%

Total

69± 33

72%

76± 34

74%

74± 30

75%

50

Figure 38. Demonstrates the mean response time for each participant in each format (Without curly

brackets, With curly brackets from same line, with curly brackets from new line)

As we go in the details of the Table 10, First we are going to di comparison with total

mean response time, and we can observe that total of mean response time for

algorithms without curly brackets is the lowest and for with curly brackets is highest.

If we compare mean response time individually, the table also gives us information

that the BubbleSort (WIC) (in orange color), MultiplyMatrix (CNL)(in green color),

BubbleSort (WOC)(in blue color) has the highest mean response time respectively

(115, 113 and 91 seconds). On the other hand, ArraySum (WOC), Power (CNL), has

minimum mean response time respectively (41,48 seconds).

After observing the Figure 38 In total mean response time, there is no such difference

in all three formats but if consider without curly brackets for all format has lowest total

mean response time and with curly brackets from same line has heights total mean

response time.

51

4.2.2 Descriptive Statical analysis of behavioral data (Correctness):

As we go further in the descriptive analysis of behavioral data now, we go to the

statics of correctness percentage of each participant for all three formats.

Figure 39. Demonstrates the average correctness percentage (%) for each participates in each snippet

in all formats (Without curly brackets, With curly brackets from same line, with curly brackets from new

line).

The second part of research question one (RQ1) is about the correctness of

participants while doing the study. To evaluate the study, we have calculated

correctness percentages for each participant and later evaluated the average

percentage for each snippet in each format. We are going to observe how the

correctness for each curly bracket style.

As we can observe in figure 39 the correctness percentage for without curly brackets

stye is lowest and for curly bracket new line is highest, however there not a big

different on total average correctness for each style of code which is respectably

minimum to maximum (72%,74%,75%).

As we go more details in figure 39, we find that the individual correctness responses.

ArraySum (WOC), ArraySum (CNL) NumberCheck (WIC), and BubbleSort (CNL) has

accuracy of 100%. On the other hand, Power (WOC), MultiplyMatrix (CNL),

PrimeNumber (WIC)shows the lowest accuracy respectively (33%,29%,43%).

52

4.2.3 Hypothesis Testing:

For this research statical analysis is essential to see weather formulated data can be

tested to determine the significance value. The data in table 10 will be used to

evaluate the hypothesis testing for research. As the table shows the mean response

time and correctness (%) for each algorithm in each curly bracket style. We have

already removed the outliers and we have already data to process.

4.2.4 Inferential Statical Analysis of Behavioral Data (Response Time):

As we have already evaluated the results for behavioral data in response time. In this

section we are going to check the significance of the data. We are going to take 95%

confidence interval and alpha value of 0.05. To evaluate the significancy of data we

are going to use One-way ANOVA test with repeated measures. We are using

ANOVA test for this because we have one independent variable which is

programming styles with three categories (WOC, WIC, CNL), we could have used

another test like t-Test if we have only two categories. We have divided our

independent variable in three groups that is Algo (WOC), Algo (WIC), Algo (CNL).

Algo (WOC) will contains all the mean values of response time for each algorithm,

which are missing a curly bracket. Algo (WIC) is going to contain all the algorithms

mean response time where curly brackets are starting from same line. At last, Algo

(CNL) is going to contains the means of each algorithm where curly bracket is starting

from new line.

First of all, we need to check the vital assumptions of ANOVA test which are normality

of samples(residuals) and equality of variance. We have cheeked normality of

samples with Q-Q plot and Shipro Wilk test. Firstly, we will explore Q-Q plot.

Figure 40. Q-Q plot to check the normality of residual

As we can see in Figure 40 that samples are near to the red line, and there is not

much distortion on the samples. So, we can say that samples are approximately

normally distributed and with the help of this information we have less chances of

53

false positive results, which makes our significance result stronger. Shipro Wilk

normality test provide us Pvalue = 0.301 which is higher than 0.05 so we can say

samples are normally distributed. We have conducted LEVENE test of variance to

check the variance of samples if they differ much or not, where we found Pvalue =

0.641, so we can say that there is not significant difference in variance of samples.

Furthermore, we can see in Figure 41 where we have generated the boxplot to see

how the mean of each group varies with each other where it gives us the information

that there is no significant difference between the mean of each group, as these

overlaps with each other. To be a results significant boxes of mean should not

overlap, should have enough gap between them.

 Figure 41. Boxplot comparing the response time mean for each group

Now we will apply ANOVA test and see the final results-

Main effect Sum_sq F value PR(>F) η²

Programming Style 237.0 0.2905 0.750 0.02

Residual 8565.5 - - -

Table 11. One-way ANOVA test results for response time

As we can clearly see in the table 11, (P-value = 0.750) which way bigger then α =

0.05. To be more sure we have also calculated effect size η²=0.02, which way near

to 0. So, we can say we have null effect size. I will help us to make our result stronger.

54

So, after analyzing the result of ANOVA test, we can come to conclusion that there

is no significant evidence that the use of curly brackets in different style make any

difference in the term of response time.

4.2.5 Inferential Statical analysis of behavioral data (Correctness (%)):

In this section we are going to discuss the correctness rate of different participant for

different algorithms, and how much significance it has on use of different curly

brackets styles. To start our analysis, we will separate our algorithms percentages in

different groups same as during response time. There is going to be three groups

(Algo (WOC), Algo (WIC), Algo (CNL). We have converted our data in this form

because it is requirement of our model. We are going to conduct our study with one

way ANOVA test because we have one independent variable with three categories.

To continue the analysis, we are going to take confidence interval of 95% and alpha

value of 0.05. We are using ANOVA test because we have one dependent variable

with three different categories. First, we need to check the vital assumptions of

ANOVA test which are normality of samples and equality of variance. We have

cheeked normality of samples with Q-Q plot and Shipro Wilk test. Firstly, we will

explore the Q-Q plot.

 Figure 42. Q-Q plot to check the normality of residual for Correctness rate

As we can see in Figure 42 some samples are near to the red line, and some are,

and some are far away which can lead us to false positive to solve this we will have

conducted Shipro Wilk test provide us Pvalue = 0.301. So, we can say there is no

violation of normality assumption and samples are normally distributed. To check the

second assumption for the ANOVA test we have conducted LEVENE test to check

the equality of variance where we found Pvalue = 0.942 which is far higher then 0.05

55

so there is no violation of second assumption and variance do not differ much from

each other. Before applying ANOVA wee have also generated the box plot to check

how the mean of each group varies. After visualizing the Boxplot in Figure 43, we can

see that mean for each group are overlapping with each other and there is no

significance difference between them. As, we have discussed earlier that to get the

significant results Boxplot mean should not overlap

Figure 43. Boxplot comparing the response time mean for each group

Now we will apply ANOVA to see final results-

Main effect Sum_sq F value PR(>F) η²
Programming Style 25.75 0.028 0.970 0.002

Residual 8565.5 - - -

 Table 12. One-way ANOVA test results for Correctness (%)

After observing the Table 12, we can say that as the (P-value = 0.975) which is

nowhere near to our alpha value=0.05, and we also calculated effect size which is

way near to 0 or null. So, we can say for now that there is no significance result that

there is the in correctness (%) while using different style of curly brackets. So now we

can come to conclusion for our first research question as we have results for both

response time and correctness.

RQ1: Does the use of curly brackets in different style makes any difference in the

term of response time and correctness?
Answer: There is no significant results which shows that there is difference in the

term of response time and correctness while using different style of curly brackets.

56

4.3 Visual Attention:

In this section we are going to discuss about how the participants perform visually

with data. We can get many answers from here from the visual patterns of

participants. To perform this operation, we have used Tobii Pro Fusion Eye-Tracker

tracker with 120hz frequency rate. After getting data from eye tracker with the help of

PsychoPy we have generated 3 most important eye tracking matrixes.

1. Heatmaps
2. Fixation Points
3. Scanpath

For our analysis purpose we are going to answer our second research question in

this section which is RQ2 – Does the use of curly brackets in different style makes

any difference in the term of Visual attention?

To process the visual attention analysis first we are going to look at heatmaps. We

can see in Table 13 where we have shown all the snippets with average heatmaps.

We have categorized sippets in three group WOC (Without curly), WIC (with curly)

and CNL (curly new lines). We have shown one snippet in two parts. First part is

program without main function and second part where we can see the whole program.

As we can see in heatmaps most of the focus is on main function and second focus

is on calculation part. As we have chosen different type of snippets some are very

simple, and some are medium complex. But none of the programmers are very

complex because we are just observing that how programmer’s eye moves during

the comprehension.

We have 6 images for each algorithm in Table 13 because we have generated

heatmaps in both images. Those are when participant see only calculation part and

after that participant see whole program.

57

Array Sum

 BubbleSort

Number
Check

WOC WIC CNL

58

Contains
Substring

Power

Binary
Conversion

59

 Table 13. Show the average heatmaps for all the combination

Matrix
Multiply

 Prime
Number

60

As we go further in analysis part, we have generated Area of Interest (AOI) for each

image. AOI’s in our study are curly brackets. AOIs are the part of snippet where the

participates supposed to focus on the study. These are (x, y) coordinates in image

and we can say calculate the quantitative eye data.

 (a) (b)

Figure 44. Shows the both the images together (a) ArraySum (without AOI’s) and (b) ArraySum (with AOI’s)

We can clearly see in Figure 44 that (a) tells how the snippet looks without AOIs and

(b) tells us how snippet looks with AOIs. Now with AOIs it will be easy for us to know

did the participant focuses on AOIs or not.

We have concentrated on other matrices as well, such as fixation and scanpath.

These visual matrices make it easier for us to understand how users interpret the

code. Fixation points let us determine where and how long a participant has been

paying attention. Particularly when combined with AOIs, it becomes stronger and

provides a larger perspective for us to comprehend. The second is the scanpath,

which instructs us to utilize the participant's pattern to understand the code. We know

the participant's eye movement path and assign numbers to it to make it simple to

see.

The fixation points, scanpath, and heatmaps are all easily visible in figure 45. So that

we can state that the user focused on the AOI for this specific picture, we can see

that the 5th AOI comprises one fixation point with a value of 500 milliseconds. This

information helps us to identify the focus point on the image.

61

 Heatmaps

 Fixations

 Scanpath

Figure 45. shows the heatmaps, fixation points and scnapath over AOIs of the Images

62

After visualizing the data now, we need to analyze that does visual attention makes

really any difference regarding to the use of different style of curly brackets? For this

purpose, we have calculated the average fixation duration for each AOI for each

algorithm and then after that overall average for each style of brackets. We can see

in table 14.

Table 14. Shows average fixation duration in AOI for each snippet

4.3.1 Descriptive Statical analysis of visual attention (Fixation Duration):

In this section we are going to see the describe effect of using different style of curly

brackets for the visual attention by comparing the fixation duration. We have

calculated average fixation duration for each snippet, and we are going to describe it

with the help of bar chart where we can compare all the fixation duration of each

snippet for different style of curly brackets used for analysis. We have converted time

Algorithmus

Without curly

(Fixation

Duration)
(ms)

With Curly

(Fixation
Duration)

(ms)

Curly newline

(Fixation
Duration)

(ms)

ArraySum

14

168

42

BubbleSort

350

152

116

NumberCheck

25

278

132

ContainsSubstring

228

778

1085

Power

166

235

216

BinaryConversion

187

29

1067

MultiplyMatrix

48

268

1500

PrimeNumber

199

445

92

Total

152

294

531

63

from second to milliseconds because in seconds we did not have enough big values

to analyze, otherwise we could not compare it in better way.

Figure 46. Shows the different response time for algorithms in different style of brackets

Figure 46 reveals that there are significant variations across the various methods, as

can be seen here. MultiplyMatrix (CNL), ContainsSubstring (CNL), and Binary-

conversion (CNL) are the primary three algorithms that stand out in terms of fixation

duration. As is evident to us, all these algorithms were derived from the third type of

curly brackets, which is referred as curly newline bracket. For the time being, we may

operate on the assumption that the duration of the fixation is affected in some way

using curly brackets. When we use curly brackets in new lines, it requires more visual

attention to grasp the code. We can also observe that the overall average is highest

for curly new lines and lowest for lines without curly. This suggests that using curly

brackets in new lines requires more visual attention. On the other hand, all the

algorithms that lack missing curly or without curly brackets them have the shortest

fixation period on the AOI. However, for the time being, let's simply presume it to be

the case; after doing statistical analysis, we will have absolute certainty about this

matter.

4.3.2 Hypothesis testing visual attention:

This study requires statical analysis to assess constructed data for relevance.

Research hypothesis testing will tell us the significance of results. In our study we

have categorical data for our independent variable.

64

4.3.3 Inferential Statical analysis of visual attention (Fixation duration):

In this section we are going to find the answer for our last research question that is

the Does the use of different style of curly brackets makes any difference in visual

attention? To process the data for analysis we are going to divide data in three groups

as we did for our past analysis. These groups are going to be Algo (WOC), Algo

(WIC), Algo (CNL).

To continue the analysis, we will choose a confidence interval of 95% and an alpha

value of 0.05. We will utilize one-way ANOVA because we have one independent

variable three categories and with to do our analysis and one way ANOVA is the best

fit in among other tests. First, we need to check the vital assumptions of ANOVA test

which are normality of samples and equality of variance. We have checked normality

of residual with Q-Q plot and Shipro Wilk test. Firstly, we will see explore Q-Q plot.

With this we are going find the normality of residuals.

Figure 47. Q-Q plot to check the normality of residual for fixation

We can observe in Figure 47 that mostly data is normally distributed but some points

are way above then the red line we can say that data is partially normally distributed.

To check this more evidently, we have performed Shipro Wilk test where we found

the Pvalue= 0.052 which is near to 0.05 but not significant enough and with Anderson

Darling Test we found Pvalue=0.70 so we can say that it is not violating the ANOVA

assumption for normality. Moreover, to check the equality of variance we have

conducted LEVENE test of variance which gives us Pvalue of 0.090 which is far away

then 0.05. Moreover, we have calculated the box plot to check the mean difference

of the group

65

Figure 48. Boxplot comparing the response time mean for each group

Moreover, visualizing the data using a Boxplot reveals that the means of each group

are not statistically distinguishable from one another and instead overlap. Boxplot

means should not overlap, as we stated before, to get statistically significant findings.

Main effect Sum_sq F value PR(>F)
Programming Style 5.87e+05 2.15 0.14

Residual 2.85e+06 - -

 Table 15. ANOVA test results

After testing the ANOVA test (Pvalue=0.14) and is quite strong evident that there is

no significant difference in visual attention while using different style of curly brackets.

Even though, in the findings of descriptive analysis we have found some results which

stands out from another but that is not enough to be statical significant.

RQ2: Does the use of curly brackets in different style makes any difference in Visual

attention ?

Answer: There’s no statical significant evident that use of different style of curly

brackets makes any different in the term of Visual attention.

66

5 Discussion

In response to the research question posted in section 1.2, we find that using curly

brackets in different styles does not significantly affect the response time of

participants during programme comprehension. Participants spent the most time

understanding snippets where curly brackets began on the same line, known as the

within curly brackets style, and the least time understanding snippets where curly

brackets were removed from a single statement, known as the without curly brackets

style. If we compare them individually, then BubbleSort(WIC) is an algorithm for which

participants take the highest response time to comprehend, and ArraySum(WOC) is

an algorithm where participants comprehend snippets in the quickest time.

Another finding we have in our study is that there is no significant effect on the

accuracy of the participant while comprehending snippets with different styles of curly

brackets. However, the overall accuracy percentage is highest when participants

comprehend snippets where curly brackets begin on a new line, which means curly

new line style snippets, and lowest when participants comprehend snippets with

missing curly brackets, but there is not much difference between all three stylings for

WOC styling (72%), WIC styling (74%), and CNL styling (75%). If we compare them

individually, there are four algorithms which have a 100% accuracy rate:

ArryaSum(WOC), ArryaSum(CNL) , NumberCheck (WIC), and BubbleSort(CNL). On

the other hand, power (WOC) has the lowest accuracy percentage.

For the second research question in section 1.2, we have calculated the average

fixation duration in the area of interest, which is curly brackets, in our study and

compared them for different categories. We find that there is no significant effect on

the participant's visual attention when using different styles of curly brackets in

programme comprehension. But we have seen some interesting observations. We

have found the algorithms that have more lines in code and curly brackets starting

from a new line have the highest average fixation duration. For example,

MultiplyMatrix(CNL)(1500ms),ContainsSubstring(CNL)(1085ms),and

BinaryConversion(CNL). (1067ms) have the highest average response time on AOI .

On the other hand, the lowest average fixation duration in AOI is for ArraySum(WOC).

If we talk about overall fixation duration, then algorithms where curly brackets start

from a new line have the highest average fixation duration in AOI and algorithms

where curly brackets are missing have the lowest average fixation duration in AOI.

5.1 Threats to Validity

• Internal validity:

Internal validity refers to the presence of other factors besides the main factor that

might have an effect on the results. There are some internal threats to validity in over

study, such as in our study, we used a table mounted eye tracker but the participant's

head was not stabilized, which may have impacted visual effect dependent

verifiability. Moreover, the length of the code was limited in our study, and we have

seen some different values for lengthy codes in our discussion. This also might have

67

an effect on internal validity.

• External validity:

External validity is about how our results can be used in the real world. In our study,

there are some threats to the external validity. First, we selected participants just

based on their academic background, which is software engineering, but we did not

compare them regarding their experience, so our study cannot be generalized in

terms of the experience of the programmer. Moreover, in our study, we used a limit

of the number of lines of code, which was a maximum of 35 lines. We cannot

generalize our study results for all lengths of code.

6 Conclusion and Future work

An eye tracking study to investigate the effects of curly brackets in different style on

response time, accuracy, and visual attention in program comprehension. To analyze

visual attention, we used average response time on Area of interest (AOI). The task

was to comprehend some snippets and choose the answer for that snippet. No

difference was found between use of different style of curly brackets with respect to

response time, accuracy, and visual attention. Although we have found some

interesting results while analyzing visual attention as more lengthy code with curly

new line has highest average fixation duration in AOI, but it was not enough to be

statically significant.

Our study was the first eye tracking study to investigate the effect of curly brackets

on programme comprehension, and we did not find any significant difference in our

study. There are so many things we can do with study in the future. First, we can

conduct the eye tracking experiment with a stronger setup, like providing head

stabilization, studying with more participants, and including experience as the

independent variable. Moreover, we can use more lengthy and complex snippets, so

the study will have strong external validity. EEG and fMRI techniques can be used to

get more ideas about the congenital processes of the programmer.

68

 References
[1] Siegmund, Janet and Jana Schumann. “Confounding parameters on program

comprehension: a literature survey”. In: Empirical Software Engineering 20.4 (2015),
pp. 1159–1192. issn: 1573-7616.

[2] Peitek, Norman, et al., ed. Simultaneous measurement of program comprehension
with fmri and eye tracking: A case study. 2018.

[3] Peitek N, Siegmund J, Parnin C, Apel S, Brechmann A. Toward conjoint analysis of
simultaneous eye-tracking and fMRI data for program-comprehension studies.
InProceedings of the Workshop on Eye Movements in Programming 2018 Jun 15
(pp. 1-5).

[4] Letovsky S. Cognitive processes in program comprehension. Journal of Systems
and software. 1987 Dec 1;7(4):325-39.

[5] Siegmund, Janet, ed. Program comprehension: Past, present, and future. IEEE,
2016. isbn: 1509018557.

[6] Sharif B, Maletic JI. An eye tracking study on camelcase and under_score identifier
styles. In2010 IEEE 18th International Conference on Program Comprehension 2010
Jun 30 (pp. 196-205). IEEE.

[7] Peitek N, Apel S, Parnin C, Brechmann A, Siegmund J. Program comprehension
and code complexity metrics: An fmri study. In2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE) 2021 May 22 (pp. 524-536). IEEE.

[8] Arooba A, Peitek N, Apel S, Mucke J, Siegmund J. Understanding Comprehension
of Iterative and Recursive Programs with Remote Eye Tracking.

[9] Norman Peitek, Janet Siegmund, and Sven Apel. 2020. What Drives the Reading
Order of Programmers? An Eye Tracking Study. In Proceedings of 28th International
Conference on Program Comprehension, Seoul, Republic of Korea, October 5–6,
2020 (ICPC ’20), 12 pages. https://doi.org/10.1145/3387904.3389279

[10] Gopstein D, Iannacone J, Yan Y, DeLong L, Zhuang Y, Yeh MK, Cappos J.
Understanding misunderstandings in source code. InProceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering 2017 Aug 21 (pp. 129-139).

[11] Incident report on memory leak caused by Cloudflare parser bug (2017)
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-
parser-bug/

[12] https://stackoverflow.com/questions/2125066/is-it-a-bad-practice-to-use-an-if
statement-without-curly-braces

[13] Bansal AK. Introduction to programming languages. CRC Press; 2014.

[14] Herbert, Schildt. "C: The Complete Reference." (2000).

[15] Schildt, Herbert. "The complete reference Java." (2020).

[16] Ritchie DM. The development of the C language. ACM Sigplan Notices. 1993 Apr
20;28(3):201-8.

69

[17] Matúš. Sulír, ed. Program comprehension: A short literature review. 2015

[18] Wilhelm Max Wundt. Grundzüge der physiologischen Psychologie. W. Engelman,
1874.

[19] Amela Karahasanović et al. “Comparing of feedback-collection and think-aloud

methods in program comprehension studies”. In: Behaviour & Information
Technology 28.2 (2009), pp. 139–164. issn: 0144-929X.

[20] Ben Shneiderman. “Exploratory experiments in programmer behavior”.

In:International Journal of Computer & Information Sciences 5.2 (1976), pp. 123–
143. issn: 1573-7640.

[21] Nancy Pennington. “Stimulus structures and mental representations in expert

comprehension of computer programs”. In: Cognitive psychology 19.3 (1987),pp.
295–341. issn: 0010-0285. Alastair Dunsmore and Marc Roper. “A comparative
evaluation of program comprehension measures”. In: The Journal of Systems and
Software 52.3 (2000), pp. 121–129.

[22] Keith Rayner. “Eye movements in reading and information processing”. In:

Psychological bulletin 85.3 (1978), p. 618. issn: 1939-1455.

[23] Punde PA, Jadhav ME, Manza RR. A study of eye tracking technology and its
applications. In2017 1st International Conference on Intelligent Systems and
Information Management (ICISIM) 2017 Oct 5 (pp. 86-90). IEEE.

[24] Kangas J, Rantala J, Majaranta P, Isokoski P, Raisamo R. Haptic feedback to gaze

events. InProceedings of the Symposium on Eye Tracking Research and
Applications 2014 Mar 26 (pp. 11-18).

[25] Hutton SB. Eye tracking methodology. In Eye Movement Research 2019 (pp. 277-

308). Springer, Cham.

[26] Grossman RB, Zane E, Mertens J, Mitchell T. Facetime vs. Screentime: Gaze

patterns to live and video social stimuli in adolescents with ASD. Scientific reports.
2019 Sep 2;9(1):1-0.

[27] https://www.ergoneers.com/en/en/hardware/eye-tracking/head-mounted/

[28] Blascheck T, Kurzhals K, Raschke M, Burch M, Weiskopf D, Ertl T. Visualization of

eye tracking data: A taxonomy and survey. InComputer Graphics Forum 2017 Dec
(Vol. 36, No. 8, pp. 260-284).

[29] Sharafi Z, Shaffer T, Sharif B, Guéhéneuc YG. Eye-tracking metrics in software

engineering. In2015 Asia-Pacific Software Engineering Conference (APSEC) 2015
Dec 1 (pp. 96-103). IEEE.

70

[30] Punde PA, Jadhav ME, Manza RR. A study of eye tracking technology and its
applications. In2017 1st International Conference on Intelligent Systems and
Information Management (ICISIM) 2017 Oct 5 (pp. 86-90). IEEE.

[31] Salvucci DD, Goldberg JH. Identifying fixations and saccades in eye-tracking

protocols. InProceedings of the 2000 symposium on Eye tracking research &
applications 2000 Nov 8 (pp. 71-78).

[32] Ghose U, Srinivasan AA, Boyce WP, Xu H, Chng ES. PyTrack: An end-to-end
analysis toolkit for eye tracking. Behavior research methods. 2020 Dec;52(6):2588-
603.

[33] Sharafi Z, Soh Z, Guéhéneuc YG. A systematic literature review on the usage of

eye-tracking in software engineering. Information and Software Technology. 2015
Nov 1;67:79-107.

[34] Crosby ME, Stelovsky J. How do we read algorithms? A case study. Computer.

1990 Jan;23(1):25-35.

[35] Bednarik R, Tukiainen M. An eye-tracking methodology for characterizing program

comprehension processes. InProceedings of the 2006 symposium on Eye tracking
research & applications 2006 Mar 27 (pp. 125-132).

[36] Busjahn T, Bednarik R, Begel A, Crosby M, Paterson JH, Schulte C, Sharif B, Tamm

S. Eye movements in code reading: Relaxing the linear order. In2015 IEEE 23rd
International Conference on Program Comprehension 2015 May 18 (pp. 255-265).
IEEE.

[37] Binkley D, Davis M, Lawrie D, Maletic JI, Morrell C, Sharif B. The impact of identifier
style on effort and comprehension. Empirical software engineering. 2013
Apr;18(2):219-76.

[38] Duru HA, Çakır MP, İşler V. How does software visualization contribute to software

comprehension? A grounded theory approach. International Journal of Human-
Computer Interaction. 2013 Nov 2;29(11):743-63.

[39] Fritz T, Begel A, Müller SC, Yigit-Elliott S, Züger M. Using psycho-physiological

measures to assess task difficulty in software development. InProceedings of the
36th international conference on software engineering 2014 May 31 (pp. 402-413).

[40] Rodeghero P, McMillan C, McBurney PW, Bosch N, D'Mello S. Improving automated

source code summarization via an eye-tracking study of programmers.
InProceedings of the 36th international conference on Software engineering 2014
May 31 (pp. 390-401).

[41] Ishida T, Uwano H. Synchronized analysis of eye movement and EEG during

program comprehension. In2019 IEEE/ACM 6th International Workshop on Eye
Movements in Programming (EMIP) 2019 May 27 (pp. 26-32). IEEE.

71

[42] Peitek N, Siegmund J, Apel S, Kästner C, Parnin C, Bethmann A, Leich T, Saake G,

Brechmann A. A look into programmers’ heads. IEEE Transactions on Software
Engineering. 2018 Aug 6;46(4):442-62.

[43] Peirce J, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, Kastman E,

Lindeløv JK. PsychoPy2: Experiments in behavior made easy. Behavior research
methods. 2019 Feb;51(1):195-203.

[44] Charness G, Gneezy U, Kuhn MA. Experimental methods: Between-subject and

within-subject design. Journal of economic behavior & organization. 2012 Jan
1;81(1):1-8.

[45] Chivers ID, Sleightholme J. Introduction to programming with Fortran. Berlin:

 Springer; 2018 Aug 21.

[46] Wirth N, Hoare CA. A contribution to the development of ALGOL. Communications
of the ACM. 1966 Jun 1;9(6):413-32.

[47] Woodger M. An introduction to ALGOL 60. The Computer Journal. 1960 Jan
1;3(2):67-75.

[48] Richards M. BCPL: A tool for compiler writing and system programming.

InProceedings of the May 14-16, 1969, spring joint computer conference 1969 May
14 (pp. 557-566).

[49] Johnson SC, Kernighan BW. The programming language B. Murray Hill, New

Jersey: Bell Laboratories; 1973 Jan.

[50] Hanford KV, Jones CB. Dynamic syntax: A concept for the definition of the syntax
of programming languages. Annual review in automatic programming. 1973 Jan
1;7:115-42.

[51] Slonneger K, Kurtz BL. Formal syntax and semantics of programming languages.
Reading: Addison-Wesley; 1995 Jan.

[52] Floyd RW. The syntax of programming languages-a survey. IEEE Transactions on
Electronic Computers. 1964 Aug(4):346-53.

[53] TURBAK F, GIFFORD D. Design Concepts in Programming Languages.

[54] Bansal AK. Introduction to programming languages. CRC Press; 2014.

[55] Agrawal H, DeMillo RA, Hathaway R, Hsu W, Hsu W, Krauser EW, Martin RJ,

Mathur AP, Spafford E. Design of mutant operators for the C programming language.
Technical Report SERC-TR-41-P, Software Engineering Research Center, Purdue
University; 1989 Mar 20.

[56] Strachey C. Fundamental concepts in programming languages. Higher-order and
symbolic computation. 2000 Apr;13(1):11-49.

72

[57] McMaster K, Sambasivam S, Wolthuis S. Teaching programming style with ugly
code. InProceedings of the Information Systems Educators Conference ISSN 2013
(Vol. 2167, p. 1435).

[58] https://stitcher.io/blog/where-a-curly-bracket-belongs

[59] https://www.kernel.org/doc/html/v4.10/process/coding-style.html

[60] https://www.originate.com/thinking/a-unique-guide-to-syntax-from-a-developers-v

73

QUESTIONNAIRE

This section provides complete sample questionnaire used to get a information from

the participant. We have provided a sample test for combination 3.

 Figure 49. First step user insert their information an click on user_eye tracking

 Figure 50. Welcome Screen for participant

74

 Figure 51. Instructions for the participant.

75

Figure 52. Participant see calculation part

Figure 53. Participant see after whole program after pressing spacebar

76

 Figure 54. Output screen for the participant for demo program

77

78

 Program 1. Array Sum

79

 Output screen for ArraySum

80

 Program 2. BubbleSort

81

 Output screen for BubbleSort

82

 Program 3. NumberCheck

83

 Output screen for NumberCheck

84

 Program 4. ContainsSubstring

85

 Output screen for ContainsSubstring

86

 Program 5. Power.

87

 Output screen for Power

88

 Program 6. Binary Conversion

89

 Output screen for BinaryConversion.

90

 Program 7. MultiplyMatrix

91

 Output Screen for Multipy Matrix

92

 Program 8. Prime Number

93

 Output screen for Prime Number

94

